Ищете решения задач? Наш сайт поможет решить любую задачу онлайн.
0 голосов

на боковой стороне AC равнобедренного треугольника ABC с основанием AB и углом при основании,равном 68*,выбрали некоторую точку D и соединили её с такой точкой E стороны BC,что DA=DE.Оказалось,что угол EAB равен 34*.Докажите,что :а)DE||AB;б)треугольник CDE равнобедренный.

от (23 баллов) в категории Математика

1 Ответ

0 голосов
 
Лучший ответ

См. рис.
а) Угол DAE = угол DAC - угол EAB = 68*-34* = 34*.
По условию DA=DE значит треугольник ADE равнобедренный и угол AED = углу DAE = 34*.
Углы AEC и AED - накрест лежащие углы при прямых DE и AC и секущей AE. Раз они равны, значит, DE||AD.
б) доказано, что DE||AD. Значит, ADEB - трапеция. Так как тр-к ABC равнобедренный, то угол A = углу B. Значит, трапеция равнобедренная и AD=BE. По условию задачи DA = DE. Тогда CD = AC-AD и CE = BC-BE = AC-AD = CD. Таким образом, тр-к CDE равнобедренный.

от БОГ (317k баллов) 3 4 4
...